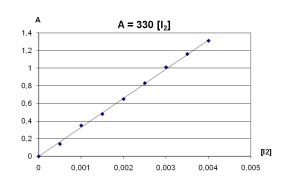
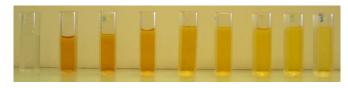


Lycée J. CURIE

Terminale S

M. Fabre


Correction TP n°2 chap 2C


Suivi de l'avancement d'une réaction lente par spectrophotométrie

II. Construction de la courbe d'étalonnage : loi de Beer Lambert

Solution	1	2	3	4	5	6	7	8
Volume versé (mL)	0,5	0,9	1,3	2	3	4,7	8	18
$[I_2]$ (× 10 $^{-3}$ mol/L)	4	3,5	3	2,5	2	1,5	1	0,5
A	2,37	2,010	1,722	1,474	1,215	0,901	0,57	0,31

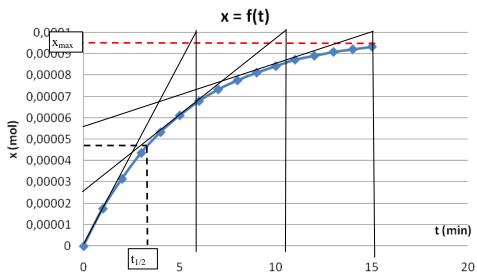
L'équation obtenue, est $A = 330 \times [I_2]$

C'est la loi de Beer Lambert

III. Suivi de l'avancement de la réaction lente :

	t (min)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	A	0	0,29	0,52	0,72	0,88	1,01	1,12	1,21	1,28	1,34	1,39	1,44	1,47	1,5	1,52	1,54
[]	$[2] (\times 10^{-3} \text{ mol/L})$	0	0,88	1,58	2,18	2,67	3,06	3,39	3,67	3,88	4,06	4,21	4,36	4,45	4,55	4,61	4,67
	x (en 10 ⁻⁵ mol)	0	1,76	3,15	4,36	5,33	6,12	6,79	7,33	7,76	8,12	8,42	8,73	8,91	9,09	9,21	9,33

1.


	$2 I^{-}_{(aq)}$ +	$S_2O_8^{2-}$ (aq) = 2 S)
EI	$n^{\circ}(I^{-}) = 5 \text{ mmoL}$	$n^{\circ}(S_2O_8^{2-}) = 0.1 \text{ mmol}$	0	0
ΕF	$n^{\circ}(I^{-}) - 2 x_{max}$	$n^{\circ}(S_2O_8^{2-}) - x_{max}$	$2 x_{max}$	$n^{f}(I_{2}) = x_{max}$

- 2. $x_{max} = 0.1$ mmol, le réactif limitant est le peroxodisulfate.
- 3. Comme $A = 330 \times [I_2]$, on a $[I_2] = A/330$
- 4. D'après le tableau d'avancement : $n^{t}(I_2) = x_{(t)}$ ce qui donne $[I_2] \times V = x_{(t)}$ avec V = 20 mL $= 20 \times 10^{-3}$ L
- 5. On trouve x_{max} = 0,095 mmol soit presque x_{max} théorique = 0,1 mmol, car la réaction n'est certainement pas terminée.
- 6. Graphiquement $t_{1/2} = 3$ min,

la vitesse de la réaction à t = 0, $v = \frac{1}{V} \times \frac{dx_{(0)}}{dt} = \frac{1}{0.02} \times \frac{0.0001}{6} = 8.3 \times 10^{-4} \text{ mol.L}^{-1}.\text{min}^{-1}$

à
$$t = 5 \text{ min } V = \frac{1}{V} \times \frac{dx_{(0)}}{dt} = \frac{1}{0,02} \times \frac{(0,0001 - 0,000025)}{10,5} = 3,6 \times 10^{-4} \text{ mol.L}^{-1}.\text{min}^{-1}$$

à t = 10 min: $v = \frac{1}{V} \times \frac{dx_{(0)}}{dt} = \frac{1}{0,02} \times \frac{(0,0001 - 0,000055)}{15} = 1,5 \times 10^{-4} \text{ mol.L}^{-1}.\text{min}^{-1}$ La vitesse diminue bien.....

